
ISRAEL J O U R N A L  OF MATHEMATICS 115 (2000), 1-24 

MEAN TOPOLOGICAL DIMENSION 

BY 

ELON LINDENSTRAUSS AND BENJAMIN WEISS 

Institute of Mathematics, The Hebrew University of Jerusalem 
Jerusalem 91904, Israel 

e-mail: elon@math.huji.ac.il, weiss@math.huji.ac.il 

A B S T R A C T  

In this paper we present some results and applications of a new invariant 
for dynamical systems that can be viewed as a dynamical analogue of 
topological dimension. This invariant has been introduced by M. Gromov, 
and enables one to assign a meaningful quantity to dynamical systems of 
infinite topological dimension and entropy. We also develop an alternative 
approach that is metric dependent and is intimately related to topological 
entropy. 

1. I n t r o d u c t i o n  

One of the basic invariants of a dynamical system (X, T) is its topological en- 

tropy. This quantifies to what extent nearby points diverge as the system evolves. 

For the shift on {1, 2 , . . . ,  k} z, the topological entropy is logk and thus gives a 

dynamical interpretation of the cardinality of the set of states. For the shift K z, 

where K is an infinite compact space, this invariant is always +co, and thus gives 

no information about K other than the fact that it is infinite. Recently, M. Gro- 

mov suggested a definition of a new dynamical invariant, the mean dimension, 

that would recover in the above example, for a nice K, its topological dimen- 

sion. Our purpose in this paper is to explore several ways of defining the mean 

dimension and to relate this new invariant to some other problems in topological 

dynamics. 

A classical theorem of Beboutov states that any real flow (X ,  Tt) whose fixed 

point set can be imbedded in N can be imbedded in the space of continuous 

functions on N, with the natural action of N (see Kakutani [5]). An open problem 

for many years (see Auslander [1] and [4]) has been to decide whether every 
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minimal system (X, T) is imbeddable in ([0, 1] z, a), where a is the shift operation. 

As we will see, a necessary condition for such an imbedding is that the mean 

dimension of (X, T) be at most 1. Since it is not hard to see that there are minimal 

systems with any value for the mean dimension, it follows that, in general, the 

Z-analogue of Beboutov's theorem fails. In a sequel to this paper by the first 

author (Lindenstrauss [7]), it will be shown that, conversely, any extension of a 

minimal system, with mean dimension at most Cd (where C is some constant), 

can be imbedded in the coordinate shift on the Hilbert cube ([0, lid) z. 

The initial examples encountered in topological dynamics of systems with a 

unique invariant measure were equicontinuous systems and their isometric exten- 

sions. These examples fostered the belief that these systems had special metric 

properties. This belief was dispelled with the discovery of Jewett that any weakly 

mixing system has a uniquely ergodic model. Since then, there have been no re- 

sults indicating that uniquely ergodic systems have special dynamical properties. 

We will relate zero mean dimension to a dynamical version of being totally dis- 

connected, and it will then turn out that any uniquely ergodic system has mean 

dimension zero. 

In the usual approach to topological dimension, one focuses on the degree to 

which open covers by sets of small diameter overlap without paying any attention 

to the cardinality of these covers. However, as Pontryagin and Schnirelmann [10] 

have shown, one can also define the topological dimension using only cardinalities 

of open covers. This suggests that the mean dimension should be directly related 

to the topological entropy of a system, and indeed we shall establish such a rela- 

tionship which will imply, in particular, that any system with finite topological 

entropy has zero mean dimension. 

While we have written this paper for the usual system (X, T) (i.e. a Z-action), 

all of the results given here can be established for discrete amenable groups, in 

particular Z d. The reader familiar with this extension will have no difficulty in 

extending all proofs and definitions to the amenable case, with the exception of 

a useful subadditivity lemma for which we include a complete proof. This lemma 

apparently has been known by ergodic theorists, but has not been published 

before. 

OVERVIEW: In w we review some well known facts related to dimension theory, 

most of which can be found in [3], define the mean dimension and deduce some 

simple properties of it. In w we compute the mean dimension for some examples, 

and indicate how to construct minimal systems with an arbitrary vahm for the 

mean dimension. In w we define an analogue of Minkowski dimension, the metric 
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mean dimension, which is very closely related to the topological entropy, and 

investigate the connection between this and the mean dimension. In w we discuss 

the small boundary property (the dynamical version of being dynamically totally 

disconnected), and show that  a system that  has this property has mean dimension 

zero. Finally, in the appendix we prove the result alluded to above concerning 

subadditive functions defined on finite subsets of amenable groups. This last 

result is all that  is needed for the knowledgeable reader to extend the results and 

definitions we present to actions of discrete amenable groups. 

This paper is part  of the first-named author 's  PhD thesis, prepared under the 

guidance of the second-named author. 

2. P r e l i m i n a r i e s  a n d  bas i c  p r o p e r t i e s  of  m e a n  d i m e n s i o n  

Let X be a compact metric space, a a finite open cover of X. We will say that  

a cover/3 refines (~ (/3 ~- a) ,  if every member of fi is a subset of some member  

of a.  

Definition 2.1: If a is an open cover of X we shall denote 

ord(a) -- max ~ 1u(x) - 1 and :D(a) -- minord(fi),  
xE X 13~-a 

U E a  

where/~ runs over all finite open covers of X refining a. 

~ ( a )  has a very important  property which we shall use heavily - -  it is subad- 

ditive, i.e. :D(aVZ) _< :D(a) +:D(fi) (for open covers a and fl of X,  their join aVf l  

is defined to be the open cover whose elements are U N V for all U E a, V E/~). 

To verify this we shall give another characterization of ~D(a) using dimension. 

We recall the definition of the (cover) dimension for compact metric spaces: X 

has dimension < D if for every open cover a of X there is a refinement fl ~- a 

with ord(fl) <_ D - -  i.e. if for every open cover a,  T~(a) < D. 

Det~nition 2.2: A continuous map f:  X --+ Y will be called a-compatible if it is 

possible to find a finite open cover of f ( X ) ,  fl, such that  f - l ( f i )  >_ a. We will 

use the notation f >- a to denote that  f is a-compatible.  

PROPOSITION 2.3: I f  X is compact, f :  X ~ Y a continuous function such that 

for every y E Y ,  f - l ( y )  is a subset of some U E a, then f is a-compatible. 

Proo~ Without  loss of generality we assume f ( X )  = Y .  If a = {U1, . . . ,  Un}, 

we define for i -- 1, . . .  ,n, 

= {v Y : / - l ( y )  c 
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By our assumption, uin=l V/ ~-- Y, and clearly f - l ( V / )  C Ui. Thus, it only 

remains to show the 17/'s are open. Assume to the contrary that  there is some 

y E V/such that  there is a sequence Yn -~ Y with y,~ ~ V/, i.e. 

f - l (yn)  M (X \ Ui) 7 ~ O. 

Let xn E f - l (yn)  A (X \ Ui). The xn have a subsequence that  converge to some 

x E X. As f is continuous, 

f(x) = l imf(xnk)  = limy,~ = y 

and so x E f - l ( y )  C Ui. 
implies that  

On tile other hand, for every n, xn E X "- Ui, which 

x = l imxn,  E X "- Ui, 

a contradiction. I 

We can now state the following characterization of D(a):  

P R O P O S I T I O N  2.4: Ira is an open cover of X,  then 

9(a) <_ k 

i f / the re  is an a-compatible continuous function f: X --+ K where K has topo- 
logical dimension k. 

Proofi Suppose there exists such an f :  X ~ K,  and a cover 3 of f ( X )  C K 
such that  f - 1 ( 3 )  >- a.  By k-dimensionality of K,  and thus of f (X) ,  the cover 3 

has a subcover 3' with ord(3`) _< k. And so 

f - l (3`)  >._ f - l ( z  ) >._ c~. 

As o r d ( f - l ( 7 ) )  = ord(3`) < k we are done. 

Conversely, suppose 3  ̀>- a,  with ord 7 -< k. We shall construct a 3  ̀compatible 

map from X to a k-dimensional simplicial complex ]C]. 

Indeed, let {Wu}ve~ be a partition of unity subordinate to 7, i.e. functions 

such that  for any x E X 

E wu(x)=- 1, 
U E'r 

and supp(wv)  C U. The vertices of C correspond to the elements of % the s- 

dimensional simplices to all families {U0, . . . ,  Us} with ~i~=0 U~ ~ 0. The points 

in each simplex {U0, . . . ,  Us} can be parameterized as 

ai[Ui], ai >_ 0 for every i, and ai = 1. 
i=0 i=0 
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We now map every point x of X into the simplex {[U]: x E U E V} of ICI by 

x ~ E wu(x)[U]. 
xEUE~[ 

This is clearly continuous, f is ")' compatible (and hence a compatible) since for 

every y E Idl, f - l ( y )  is a subset of every U that corresponds to a vertex of the 

least dimensional simplex of ICI containing y. | 

COROLLARY 2.5: "D is sub-additive, i.e. i ra  and j3 are/~nite open covers of X 

:n(o  v _< + 

Proof: If f :  X --4 A is a-compatible, with dimA = ~(c~), and g: X ~ B is 

/3-compatible, with d i m B  = :D(~), then h: X ~ A • B with h: x ~ ( f (x ) ,g(x) )  

is a V/3 compatible. By the well known properties of dimension, dim A • B <__ 

dimA + d imB,  and hence we have an a V 13-compatible mapping from X to a 

space of dimension <__ :D(a) + i/)(/3). | 

If a is an open cover of X,  we will use the notation a b for b > a E Z to denote 

the open cover 
dab = T - a a  V T - ~ - l a  V . . .  V T-ba.  

De#nition 2.6: If (X, T) is a dynamical system, then the mean dimension of 

(X, T), denoted by mdim(X, T) (or mdim(X) if T is understood), is defined by 

mdim(X,T)  = sup lim T)(a~- l ) ,  
r n--+ oo 7~ 

where a runs over all finite open covers of X. 

Remarks: 

�9 The fact that  the limit above exists is a consequence of the sub-additivity 

of T), and is true also for the general case of amenable group actions (see 

appendix). In this case, the limit over n is replaced by taking the limit on 

subsets of the group that  become more and more invariant. 

�9 It is clear from the definition that if X '  is a T-invariant closed subset of X 

then 

mdim X ~ < mdim X. 

However, unlike topological entropy, mdim of a factor may be greater than 

the mdim of the original system. The same is, of course, true for the usual 

topological dimension. 
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�9 Recall that  the topological dimension can be defined by 

dim X = sup D(a) 
C~ 

where a runs over all open covers of X. It follows that  if X has finite 

topological dimension, then for any a and n 

D(a~ -1) < d imX,  

and hence mdim(X)  = 0. 

�9 In the definition of mdim one can replace sups by 

sup lim D(a(k)~-l) 
k n--+ ec I t  

where a(k) is any sequence of open covers such that  the maximal diameter 

of an element of a(k) tends to zero as k ) oo. 

We now prove some easy results about mdim, showing that  this new invariant 

is well behaved. 

PROPOSITION 2.7: 

Proof'. 

For any dynamical system (X, T), 

maim(X,  T n) = n .  maim(X,  T). 

Let a be any open cover of X. Then 

lira D ( a  V T - ~ a  V-- .  VT- (k -1 )na )  <_ n.  lira D(a~ 
k--+oe k k - - + ~  k n  

< n mdim(X, T) 

and so mdim(X,  T n) < n .  mdim(X, T). o n  the other hand, 

and so 

ozkon-1 ~_ Oz 0 n--1 V T - n a ~  - 1  V ' " V  T-(k-1)nOl~ -1 

mdim(X, T n) 
m d i m ( X , T )  = s u p  lim /9(a~ < 

a k - - + ~  k n  - -  n 

PROPOSITION 2.8: Let (Xi,Ti) be a sequence of dynamical 

l <_ i < R, R E N U { o c } .  Then 

| 

systems, for 

mdim(X,  x X2 x . . .  ,T1 x T2 x . . . )  < E mdim(Xi,Ti) .  
i<R  
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Proof: Let c~ be any open cover of X1 x X2 x . . . .  There is an N < R and open 

covers/~(j) of X j  such that 

N 

fl = V 7r~-:(~(j)) >- c~, 
j = l  

where 7i-j is the projection onto the j th  coordinate. By subadditivity of :D(-), 

and so 

N 

j = l  

N ~ ) ( / ~ ( j ) ~ - l )  N 

lim Z)(/3~-t) < E lim -- -< E mdim(Xj).  | 
n--+oo T/, n-+oo T/, 

j = l  j = l  

3. Some examples 

We begin with calculating the mean dimension of some natural dynamical 

Let  K be f inite dimensional and compact ,  and let ~r be the  

systems. 

P R O P O S I T I O N  3 . 1 :  

shi f t  on K z. Then  

mdim(K z, a) _< dim K. 

Proof: Let a be any open cover of K z. For every a < b, let 7rb: K z --+ K b-a+: 

be the projection of an element of K z to its coordinates with indices in the range 

a . . .  b. As the topology on K z is the Tychonoff topology, there is a refinement 

c~' of a, and an N such that every U E a '  is of the form (Tr_NN)-: (V) for some 
open V C K 2 N + l .  

Thus to show mdim(K z) <_ dim K it suffices to show that for a '  of the above 

form, 

lim :D(a'~-:) _< dimK. 
n---~oo n 

However, c~'n-10 is actually the inverse image (via 7r_ g + n - :  ) _  of a cover of K 2N+l+n . 

Since K 2N+l+n has dimension at most (2N + 1 + n ) d i m K ,  there is a cover r 

that refines 7rN+~-l(a ') with ord(~) <_ (2N + 1 + n ) d i m K .  As 

(_ N - t - n -  l"~ - 1  i n - 1  
j 
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we see that  

-1) 
n 

< ( 2 N + l + n )  d i m K  

n 
d i m K  a s n  >co. I 

There are compact subsets K of N d such that  dim K x K < 2 dim K,  and so 

the above result cannot be improved in general. However, for nice K we have 

indeed that  mdim K z = dim K.  We will need the following dimension theoretic 

lemma: 

LEMMA 3.2: / f ~  is an open cover of  [0, 1] d such that no U E ~ intersects two 

opposing faces of  the cube, then ord(c~) > d. 

Proof." Like most results of this type, this is merely a reformulation of the 

Brouwer Fixed Point Theorem. Indeed, suppose ord(c~) < d. We can use this to 

construct a continuous map F from [0, 1] d to ICI, a d - 1 (or lower) dimensional 

simplicial complex with a vertex [U] corresponding to each U E c~ and simplices 

corresponding to all families {U0, . . . ,  Us} with Ai~0 Ui ~ 0 (just like we did in 

t h e  proof of Proposition 2.4). 

Now define G: ICI --+ [0, 1] d as follows: first map the vertices of C by G: [U] ~-+ 

(co ( U ) , . . . ,  e d - l ( g ) )  where 

1 if U intersects the face xk = 0 of [0, 1] d, 

ek(U) = 0 otherwise, 

then extend this to the simplices of ICI in an affine way. G o F: [0, 1] d --+ [0, 1] d 

maps the d dimensional cube to a finite number of at most d - 1 dimensional 

simplices, so its image cannot contain (0, 1) d. Let 

p E (0, 1) d \ Image(G o F),  

and take H to be the projection that  sends an x E [0, 1] d \ { p }  along the ray 

emanating from p and passing through x to the boundary of [0, 1] d. The map 

H o G o F maps the d dimensional cube to its boundary, and maps each face of 

the cube to the opposite face, so this map has no fixed points neither inside the 

cube nor on its boundary, in contradiction to the Brouwer Fixed Point Theorem. 

I 

We now prove that  if K = [0, 1] d then m d i m K  z = d i m K .  With an eye to a 

construction of a minimal system that  is not imbeddable in ([0, 1] z, a) we prove a 
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slightly more general s ta tement .  If I = { . . .  i0 < il  < i 2 " "  } is a finite or infinite 

subset of Z, we take 71" 1 to be the project ion 

7ri: ( . . . , X o , X l , , . . )  --~ (...,Xio,Xil,...) 

(Tri is a function from K z to K 1II, K N or K z depending on I) .  

PROPOSITION 3.3: Let X be a shift invariant closed subset of  ([0, 1]d) Z such that 

there is an infinite set of indices I C N and an �9 C X such that 

then 

1. I has upper density O, i.e. 

O= 

2. any  x e ([0, 1]d) z with 

is in X;  

lim IXn { 0 , . . . , n -  1}1. 
n-+oo n 

~ Z \ I ( X )  : ~ Z \ I ( X )  

mdim(X)  _> Od. 

In particular, maim (([0, lid) z, a )  = d. 

Proo~ Let a '  be a cover of [0, 1] d such tha t  no element of a' intersects two 

opposing faces of the cube [0, 1] a, and let a = ~r~-l(a'). a is an open cover of 

([0, 1]d) z, and since X C ([0, 1]d) z it induces an open cover & of X.  

We now est imate  D(&~-I) .  Let I(n) = I N { 0 , . . .  , n - l } .  For any/3 ;~ T~(&~ -1) 

the collection of sets 

is an open cover of ([0, 1]d) II('~)1, and clearly no element of fir can intersect two 

opposing faces of the cube ([0,11a)11(n)l. Thus ord(~') _ dlZ(n)h and this also 

means tha t  ord(~) _> dlI(n)[. Since fl was an arbi t rary  refinement of -,~-1 Ol 0 w e  

see tha t  Z)(&~ -1) > dlI(n)l, hence 

m a i m ( X )  >_ lim 7)(&~-l)  >_ ~ d l I ( n ) ]  Od. | 
n-~o~ n n-~oo n 

Remark: In a very similar way, one can see tha t  if X C ([0, 1]N) z, and for a set 

I C N of indices with positive upper  density and �9 E X we have tha t  any x with 

7rz.. i (x )  = 7rz-. 1(~) is in X,  then mdim(X)  = oc. 

Since mean dimension is a topological invariant of ( X , T ) ,  and the mean 

dimension of a closed invariant subset of a dynamical  system is a t  most  the  

mean  dimension of the full system, we get: 
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COROLLARY 3.4: A necessary condition for (X ,T)  to be imbeddable in the 

dynamical system (([0, lid) z, a) is that mdimX _< d. 

The standard methods of constructing minimal subshifts yield the existence of 

minimal systems with mean dimension r for all r E R+U{oc}. Any such example 

with mean dimension greater than 1 will not be imbeddable in ([0, 1] z, or); any ex- 

ample with infinite mean dimension will not be imbeddable in any (([0, 1]d) z, a). 

We remark that  it is very easy to show that  any dynamical system can be imbed- 

ded in (([0, 1]•) z, a) - -  indeed, any compact metric set X can be imbedded in 

[0,1] N (say using the map r and thus 

~5: x ,  > ( . . . ,  r  r r  ) 

is an imbedding of (X ,T)  in (([0, t]N)z,a). For completeness, we show in 

detail how to construct a minimal shift invariant closed subset of ([0,112) z with 

mdim(X) > 1. 

PROPOSITION 3.5: There is a shift invariant closed subset X of ([0, 112) z such 

that ( X, a) is minimal and mdim(X) > 1. 

Proo~ We consider ([0,112) z as bi-infinite words from the (rather large) alphabet 

D = [0, 1] 2. As a metric on this space we take 

0O 

d(x,y) = ~ 2- i l [x -y [ I  
i : - -  (X) 

where PI'II is any norm on ]R 2 (for example, the Euclidian norm). It will be 

convenient to use for a < b the notation 

b 
X a = ( X a , X a + l ~ . . . ~ X b )  

(we will use this notation also for x E D N for finite N; in this case we begin to 

index the coordinates of x from 0). 

We will build a decreasing sequence Xn of closed shift invariant subsets of D Z, 

and a decreasing sequence of subsets In C N such that: 

1. The orbit of every point x C Xn comes within distance C2 -n of every 

y E  Xn. 
2. There is an :~(n) E X~ such that any y E D z with ~rz\ in (:~(n)) = l r z \  I~(Y) 

is also in X,~. 

3. 7rz. . i . (~(m)) = 7rz-. l~(5:(n)) for any m > n. 

4. I = ~,~ In has upper density greater than 0.9. 
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From (1), X = Nn X ,  is minimal. From (2) and (3), if 5: is any limit point of 

the set {5:(n)} then for all n, any y with 7rz \ i . (~)  = 7rx-.i.(y) is in X,~, hence 

any y with 7rz .. i(5:) = 7rz-. i(Y) is in X. Finally, from (4) and Proposition 3.3, 

mdim(X) > 1.8. 

So, it remains to construct .the Xn, 5:(n) and In. The X ,  will be of block type: 

there will be an Ln E IN and B,~ C D L€ such that 

Xn { ( . . . X _ l , x O , X l , . . . ) : ~ k E Z s . t .  V a E Z ,  k+aL,~+L,~-i } ~-- Xk+aL,~ E Bn �9 

Such a (nonempty) system of block type is always topologically transitive, i.e. 

there is an ~ E Xn such that its orbit is dense in X, .  We take g'(n) to be any 

point of Xn such that 

xaLn+Ln-1 aL,~ E Bn for all a E Z. 

We start from L1 = 1, B1 = D, X1 = D Z, and I1 = N. We proceed by 

induction; so assume we have defined Ln, Bn and I~. Take :~ to a point in 

X,~ with dense orbit. By replacing ~ by its shift if necessary, we can assume 
xaLn+L.-1 aL. C B ,  for all a E Z. We take /n+l to be an integer divisible by 2Ln 
such that for any y E X ,  there is a 

k E {- /n+l  + 10n , . . . ,  1.+l  -- 10n} 

such that d(y, akYc) < 2-n. We define Ln+l = 2n+1~ and B,+I  by 

Bn+, = {b E DL'~+': Va, h " L " + L " - '  L:+ : - I  : ~/,,+,-1 ~aL,~ E B n  and b -2t.+, -z.+l }" 

Finally, we define 

In+l = I ,  Cl { k -  0, . . . ,L,~+I - 2/,~+1 - 1 (mod L,+I)}.  

We leave to readers the verification that X , ,  ~(n) and In so defined have the 

required properties. I 

We have already calculated the mean dimension of [0, 1]z; now we wish to 

consider factors of this system. In Lindenstrauss [6] a relatively simple argument 

was used to show that all factors of [0, 1] z have infinite topological entropy. We 

use a similar argument to show that all the factors of [0, 1] z have strictly positive 

mean dimension. 
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THEOREM 3.6: f f  (Y, S) is any nontrivial factor of ([0, 1] z, a) then 

mdim(Y) > 0. 

Proo~ Let r [0, 1] z --+ Y be the factor map from ([0, 1] z, a) to (Y, S). Let 

a = {U0, U1} be an open cover of Y such that  neither U0 nor U1 is dense in Y. 

We shall prove tha t  

lim 79(a~-1~) > 0. 
n--+oo T/, 

n--1 Indeed, for any /3  tha t  refines a 0 , r refines r  and 

ord(r  = ord(/3). 

Thus  it suffices to prove that  for any open cover & = {V1, V2} of [0, 11 z, such tha t  

for i = 0, 1, el V / r  [0, 1] z, 

(3.1) l i m  ' D ( ~ - I ~ )  > O. 
n--+o~ n 

As the V~'s are not dense, there are pi E V/, N,  and e such that  if [[TrNN x -- 

7rN_NpiLIoo < ~ then x r Vl- i .  By replacing V/wi th  

{x e [0, llZ: I[TrN_N x -- zrN_Np,_il[oo > e} 

if necessary, we can assume the Vi are cylindrical sets tha t  depend only on the 

coordinates  - N . . .  N.  Find some line ~ C [0, 1] 2N+1 such tha t  ~ r cl(7c_NNV~) for 

i = 0 and 1. Limiting our a t tent ion to the subset 

N+(2N+I)k / 
X '  = {z C [0, 1]z: Vk "K_N+(2N+I)k(X ) E ~} 

we can use similar arguments  as in the proof tha t  mdim([0, 1] z) = 1 to see tha t  

~)((~ V O'-(2N-t-1)~ V " ' '  V O ' - (k -1) (2N+l ) (~)  : k, 

where ~ is the restriction of the cover & to X' .  It follows tha t  for all k 

=k(2N+l)-l~ 1 7?(~o ) > -  
k (2N  + 1) - 2N + 1' 

and thus mdim(Y)  >_ ~ > 0. | 

It is also possible (with some effort) to find a minimal dynamical  sys tem with 

all its factors having strictly positive mean dimension - -  the example in Linden- 

strauss [6] of a minimal system with no finite entropy factors also has no zero 
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mean dimensional factors. A similar example can be found in Glasner and Maon 

[2]. 

We conclude this section with a simple example of a system with zero topo- 

logical dimension (and hence also zero mean dimension) with [0, 1] z as a fac- 

tor: Let C be Cantor's set. C can be mapped (say by the map r onto [0, 1]. 

Then ( . . . ,  x0, X l , . . .  ) t--)" ( . . . ,  q~(X0) , ~b (Xl ) , . . .  ) is a factor mapping (C z, a) > 

([0, 1] z, a). This example shows that, unlike entropy, factor maps can definitely 

increase mean dimension. 

4. T h e  m e t r i c  m e a n  d i m e n s i o n  

In this section we present another definition of mean dimension, and investigate 

the connection between this new mean dimension, which we will call the metric 

mean dimension, and mdim(X). In particular, we will learn something new about 

mdim(X) - -  if htop(X) is finite, mdim(X) = 0. The metric mean dimension 

depends on the metric d, and can be thought as a mean Minkowski dimension. 

For an open cover a,  define the mesh of a according to the metric d by 

mesh(a, d) = max diam(V). 
UEa 

Definition 4.1: Let X be a dynamical system, d(.,-) a metric on X. Define 

d N ( X , y  ) = m a x  d(Tnx, T'~y). 
O~_n<N 

Set 

(4.1) S(X,  e, d) = lim inf log lal 
n-~.oo mesh(a,dn)<:e n 

S is monotone nondecreasing as e -~ 0, and we wish to measure just how fast it 

increases. We define the m e t r i c  m e a n  d i m e n s i o n  of X (for the given metric 

d), mdimM (X, d), as 

(4.2) mdimM (X, d) = lim S(X,  e, d) 
~-}o [ loge[ 

To get a topological invariant we shall set 

mdimM (X) = inf mdimM (X, d). 
d metric on X 

Notice that if mesh(a, dn) < e and mesh(~, din) < e then 

mesh(a V T-n~,  dn+m) < c. 
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Thus  infmesh(c~,d~)< e log [a I is a subaddi t ive function of n, and the limit in (4.1) 

can be replaced by an infimum. 

Recall  how the topological entropy is defined for a dynamical  sys tem X.  Let 

X be a dynamica l  system, d(., .) a metr ic  on X.  A set S < X is called (n, e, d)- 
spanning if for every x E X there is a y E S so tha t  for all 0 _< k < n, 

d(Tkx, Tky) < e. 

Set 

A(X, n, e, d) = min{ISl: S c X is (n, e, d)-spanning}. 

The  topological  en t ropy is defined in te rms  of these as 

(4.3) 

Notice tha t  

S'(X,e,d) = lim logA(X,n,e,d)., 
n - +  o o  n 

htop(X) = lim S'(X, e, d). 
e--~-0 

S'(X, e, d) > S(X, 2e, d) >_ S'(X, 2e, d). 

Indeed,  the  first inequali ty is a consequence of the fact tha t  if S is (n, e, d)- 

spanning,  the  dn balls of radius e cover X - -  and these are IS[ sets of d~ d iameter  

smaller  than  2e. The  second inequality is a consequence of the fact tha t  if a is a 

cover with mesh(a ,  d,~) < e, and we choose one point  from each element of a to 

form a set S, then S is (n, e, d) spanning.  Thus (4.2) is equivalent to 

s ' (x ,  ~, d) 
mdimM (X,d) = ~-~oli--mm ilogel 

And, in par t icular ,  the metr ic  mean  dimension will be nonzero only if htop(X) = 

OO. 

The  rest of this section is dedicated to showing tha t  the mean  dimension of X 

is not larger than  the metr ic  mean  dimension for all metr ics  d on X.  

THEOREM 4.2: For any dynamical system (X, T), and any metric d compatible 
with the topology on X, 

m d i m ( X )  _< mdimM (X, d). 

As m d i m ( X )  = sup s limT?(a'~-l)/n, it is enough to prove tha t  for any finite 

open cover a of X ,  

lim ~D(a~-1) _< mdimM (X, d). 
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We can refine a to be of the form 

(R = {U1, Vl } V {U2, V2} V ' "  V {Vr ,Vr} ,  

where for every i, {Ui, V/} is a two element open cover of X. 

Set wi: X --+ [0, 1] by 

d(z, X \ Vd 
wi(x) = d(x,X \ Vi) + d(x,X \ Ui)" 

Notice that  wi is Lipschitz, and 

gi =- wi-l[0,  1), 

(4A) = wi- l (0 ,1] .  

15 

Let CL be a bound on the Lipschitz constant of all wi. For any N define 

F(N, .): X --+ [0, 1] ~N by 

F(N,  x) = ('t/)l (X), W2(Z), . . . ,  ?/Jr(X), 

W I ( T x ) , w 2 ( T x ) , . . . , w r ( T x ) ,  

wl(TN x), w2(TN x),. . .  , w~(TN x) ). 

From (4.4) we see that F(N,.) ~- ~No-1. As usual, if S C { 1 , . . . , r N } ,  then 

F(N, x)s E [0, 1] Is] is the projection of F(N, x) to the coordinates in the index 

set S. We need the following two lemmas: 

LEMMA 4.3: Let e > 0, D = mdimM (X,d). If N is larger than some N(e), 

there is a ~ E (0, 1) ~N such that for any ISI _> (D + e)N, 

~s ~ F(N, X)s.  

Proof: Let 
6 < (U(2CL)2D) -2/~ 

be such that  
S(X, 5, d) < mdimM (X, d) + r 

I I ~  - 

I f  N is large enough (depending on e and 5), X can be covered by 6 -(D+~/2)N 
balls of the form 

Bx(x ,N ,  6) = {z' C X: d(Tkx, Tkx ') < 6 for all 0 _< k < N}. 



16 E. LINDENSTRAUSS AND B. WEISS Isr. J. Math. 

Since C L is a Lipschitz constant for all wi 

F(N, B x ( x , N ,  6)) C {a �9 [0, 1]rN: IIF(N,x) - a l l ~  < CL6}, 

the set F(N, X) can be covered by 6-(D+e/2)N balls in the I1.11~ norm of radius 

CLh. Enumerate these balls as B(k), k = 1 , . . . ,  K = 5-(D+~/2)N. 

Choose ~ with uniform probability in [0, 1] rg.  For any S 

Hence 

K 
P(~S �9 F ( N , X ) s )  <_ E P((s  E B(k)ls)  <_ 5-(D+r ISI. 

k=l 

P(3S: ISl _> (D + e)N and ~s �9 F ( N , X ) s )  <_ 

< ~ P(r149 
ISI>_(D+c)N 

< (#  of such S) • 5-(D+e/2)N(2CLh) (D+e)N 

< 2rN((2CL)2Dt~e/2) N << 1, 

and so, with high probability, a random ~ will satisfy the requirements. 

LEMMA 4.4: 

�9 [0,1] "u, 

| 

If 7r: F(N, X) -+ [0, 1] ~N satisfies for both a = 0 and 1, and all 

then 7r o F(N, .) is compatible with a N- i  

Proof'. Indeed, if ~ �9 [0, 1] rn, define for 0 < j < N and 1 < i < r, 

f T -jUi i f ~ j r + i = 0 ,  
Wi 

'J = ~ T-Jvi  otherwise. 

It is easy to see that 

c N w, j �9 OlZ -1. m 
l < i < r  
O~j<N 

Proof  of Theorem 4.2: Let e > 0. Find ~, N as in Lemma 4.3. Let 

(I) = {~ 6 [0, 1]rN: ~k = ~k for more than (D + e)N indexes k} ; 

( l  < k < rN: ~k =a}  C {l < k < rN: ~r(~)lk =a},  
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thus F(N ,  X )  C [0, 1] rN \ ~2. For brevity we shall denote the latter set as Oc. 

We shall construct a continuous retraction ~ of (I) c onto the [(D + ~)N] + 1 

skeleton of the cube I = [0, 1] rN. For m = 1, 2, . . .  , we denote by Jm the set 

Jm = {~ e I:  ~i E {0, 1} for at least m indices 1 < i < rN} .  

Since ~ is in the interior of I ,  one can define ~h: I \ {~}  --4 J1 by mapping 

each ~ to the intersection of the ray starting at ~ and passing through ~ and J1- 

For each of the ( r N  - 1)-dimensional cubes I l that  comprise J1, we can define 

a retraction on fl in a similar fashion using as a center the projection of ~ onto 

ft. This will define a continuous retraction ~r2 of (I) C into J2- As long as there is 

some intersection of a9 with the cubes in J,~ this process can be continued, thus 

we get finally a continuous projection Ir of (I)C onto J-~o, with 

m0 + [(D + e)N] + 1 = n. 

Clearly, ~ satisfies the conditions of Lemma 4.4. Thus ~ o F(N ,  .) ~- a N-1 

Also, as F(N ,  .) C ~h C, 

o F(N, .) c jmo, 

the latter having topological dimension I(D + e)NJ + 1. 

To summarize: we have constructed an c~0 N-1 compatible function from X to 

a space of topological dimension ~_ (D + e)N + 1, and so 

"D(Of N-l) ~ (D + e)N + 1. 

As ~ > 0 can be made as small as we like, (~ as refined as we like, we see that  

indeed 

mdim(X)  < D. | 

It  is plausible that  equality actually holds in Theorem 4.2. In general this 

is still open, but Lindenstrauss [7] contains a proof of this for Z-actions, if in 

addition (X, T) is an extension of a minimal system. 

5. T h e  s m a l l - b o u n d a r y  p r o p e r t y  

Definition 5.1: Let ( X , T )  be a dynamical system, and E a subset of X. We 

define the o r b i t  c a p a c i t y  of the set E to be 

n- -1  
~ i = 0  1E(Tix) 

ocap(E) = lira sup 
n-*oo x~X n 
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A set E C X will be called sma l l  if ocap(E) = 0. 

We remark that  the limit above exists since 

nWr n- -1  n - -1  rn--1 

sup E 1E(Tix) <- sup E 1E(Tix) + sup E 1E(Tix)" 
x C X  i=0  x c X  i=0  x E X  i=0  

Del~nition 5.2: A dynamical system (X, T) has the s m a l l - b o u n d a r y  p r o p e r t y  

(SBP) if every point x C X and every open U 9 x there is a neighborhood V C U 

of x with small boundary. 

The notion of SBP can be thought of as an analogue of the usual definition of 

zero dimensional space: X is zero dimensional if for every point x E X and every 

open U 9 x there is a neighborhood V C U of x with empty boundary. 

The definition of small sets was introduced in Shub and Weiss [11], where it 

was shown that  if X is uniquely ergodic (or even if it has less than 2 a~ ergodic 

T-invariant measures) then X has the SBP. Indeed, first we note that  for any 

closed set E that  is not small there is some invariant probability measure # such 

that  # (E)  > 0 - -  let xk be a sequence such that 

1 Nk--1 

gk ~ 1E(T~xk) -> c > 0; 
i=0  

then any weak* limit point of 

Nk -- 1 

Nk i=0 

is invariant and satisfies #(E)  > c. Conversely, if E is small and # an invariant 

measure 

l 1E(T~x)8#(X)~ O. 
~ ( E ) =  n i~-o 

Now, if X is uniquely ergodic, and # the unique invariant measure, then for any 

x c X,  the set 

{r e R+: {y: d(x,y) = r} is not small} = {r E N+: #{y: d(x,y) = r} r  

is countable, and so there are many arbitrarily small balls around x with small 

boundary, and X has the SBP. 

The following proposition is an immediate consequence of the definitions: 
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PROPOSITION 5.3: If (X,T) has the SBP, then for every open cover ~ of X and 
every c there is a subordinate partition of unity Cj: X --~ [0, 1] (j = 0 . . .  Ic~]) 

such that 

Cj(x)  -_- 1, 
j = l  

s u p p ( r  for s o m e U e ~ , a n d j = l , . . . ,  I~1, 
I5I 

(5.1) ocap( U r  (0, 1)) < ~. 
j = l  

Proof: First find (using the SBP) a cover of X by open sets with small boundary 

that refines c~, and by taking unions of these sets it is possible to find a refinement 

c~' ~- a such that there is a one-to-one correspondence between the elements Uj 

of a and U~ of c~' with U~ C Uj. 
Let N satisfy 

N-1 

1 lbdu;(T*x)< ~-~, for a l l x � 9  
N i=0 

and 5 be small enough so that for all j 

N-1  
1 

E 1B(bdU;'5) (Tix) < I01---I~' 
i=0 

where B(bd U~, 5) is the set of all points of distance smaller than 5 from bd U~. 

We also take 5 to be small enough so that  B(bd Uj, 5) c Uj for all j .  Now take 

1 i f x � 9  

~j(x) = max(O,l_5_ld(x,  bdU~) ) otherwise. 

We define the functions r as follows: 

q~i (X) ---- @I(X), 

r = min(r 1 - r 

r = min(r 1 - el(x) - r 

These clearly satisfy the required conditions. | 



20 E. L INDENSTRAUSS AND B. WEISS Isr. J. Math.  

THEOREM 5.4: Every space with the SBP has mean dimension zero. 

Proof: Let (X,T)  have the SBP, a a cover of X. Take e > 0. Construct, 

according to the above proposition, an a subordinate partition of unity which 
k obeys (5.1). Let lal = k, A = ~Ji=l r 0, 1). Assume N is large enough so that 

N - 1  

1 E I A ( T - i x )  < ~ for a l l x C X .  (5.2) 
i=0  

Define ~: (X, T) ~ 1R k by 

x ( r  

Define the map fg:  X --+ ]I~ k N  by 

f N(x) = (aP(x), ~ (Tx) ,  . . . , ~ ( T N - l  x) ). 

We claim that f N ( X )  is a subset of a finite number of r dimensional affine 

subspaces of IRkN. 

Indeed, let e}, i = 1 , . . . , N ,  j = 1 , . . . , k  be the standard base of R kN. Define 

for every I = { i l , i 2 , . . . , iN , } ,  N'  < ~N, and every ~ E {0,1} kN 

C(I ,~)  = span{ej: i e I, 1 <_ j _< k} +4 .  

Then by (5.2), 

fN(x) c U 

It is easy to see that fN is a0N-l-compatible. By Proposition 2.4 we see that 

D(a N - l )  < ~kN 

and so (X, T) has zero mean dimension. | 

Note that  in general the converse to this theorem may be false. Indeed, consider 

the dynamical system X = IR/Z • ~ / Z  and T: (x,y) ~-~ (x,y + x rood 1). X 

is finite dimensional, hence mdimX = 0, but no small neighborhood of any 

point of the form (0, y) has small boundary, since this boundary must contain 

at least two points fixed by T. There are, however, cases where the converse 

holds (Lindenstrauss [7]), and presumably a better definition of the SBP that 

takes into account the periodic points should be equivalent to mdim X = 0. See 

Lindenstrauss [6] for a modification of the SBP that holds for finite dimensional 

dynamical systems. 
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6. A p p e n d i x :  S u b a d d i t i v e  f u n c t i o n s  o n  a m e n a b l e  g r o u p s  

Let G be a discrete (countable) amenable group. According to Folner 's  charac- 

terization of such groups for any finite K C G and any 5 > 0 there is a finite set 

F tha t  is (K, 5)-invariant in the sense that  

I{ f  E F: K f  c F}I -> ( 1 - 5 ) I F  I. 

If r is a nonnegative monotone  subadditive function defined on the finite subsets 

of G tha t  is right t ranslat ion invariant, i.e. 

r  = r  for all g E G, A C G, 

then as sets F become more and more invariant r  I converges to a limit. 

More precisely, there is a finite limit b such that  for all e > 0, there is a finite 

K C G and 5 > 0 such tha t  for any F tha t  is (K, 5) invariant we have 

Ir  - bl < ~. 

The classical application of this fact is in defining the entropy of a G-indexed 

s ta t ionary  process (Ornstein and Weiss [9]). For the record we present here a 

proof  of the general fact. 

THEOREM 6.1: f i g  is amenable  and r is defined on the finite subsets o f  G and 

satisfies: 

1. 0 ___ r  < + o c  and r = 0, 

2. r  _< r  for a11 A C B,  

3. r  = r  for all A C G and g E G, 

4. r 1 6 2 1 6 2  

then L-~-Ti r  converges to a limit as the set A becomes more and more  invariant. 

It  is worth pointing out tha t  there is some novelty in the theorem even in the 

case G = Z. A special case of the theorem for G = Z is a well known calculus 

exercise - -  proving tha t  for any subadditive sequence 0 < an (i.e. one satisfying: 

an+m < an .+  a,~) the limit lim a_~ exists. 
- -  n 

Since the proof  of the theorem is based on the proof of this exercise let us 

briefly recall it. Set 
an 

z = inf - - .  
n 

If ~ :> 0 is given and N chosen so tha t  ~ ~ z + c, then for all n > N,  writing 

n = q N  + r  with r < N we see tha t  

a,~ < aqN + ar < qaN + ar, 
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which upon division by n gives 

an qN aN ar q N ,  aT 
n - n N +--n <- n z+e)+--,n 

so that  lira ~ _< z + e, which shows that  lim a~_n equals z. 

Such a sequence corresponds to a translation invariant subadditive function 

defined not on all finite subsets of Z but only on intervals. The key property of 

intervals usedin the above proof is that  any interval tiles, via disjoint translations, 

any large interval, up to a small error. For general finite sets in Z this is no longer 

true, so that  taking an infimum over all finite sets does not appear to work. What  

is needed is a substitute for this tiling property, and we shall use the machinery of 

quasi-tiling by approximately invariant sets, as developed in Ornstein and Weiss 

[9]. Here are the notions that  are necessary to formulate the results that  we need: 

Definition 6.2: A collection of finite sets {Ej}  is said to be e-disjoint if there are 

subsets /~j  C Ej satisfying: 

�9 E j N E i = ~ f o r a l t j T L i ,  

�9 lY.jl/IENI _> 1 - e for all j .  

Definition 6.3: A collection of sets {Ti: 1 < i < M} in a group G is said to 

e-quasi  t i le  the group if there is a finite K C G, r~ > 0, and translates {Ticij}i,j 

of the  Ti that  are e-disjoint, such that  for any F that  is (K, ~?)-invariant one has 

I f n U T i c i j l / I f  I > 1 -  e. 
i j  

The following theorem is in Ornstein and Weiss [9], 1.2: 

THEOREM 6.4: For any amenable group G, given e > O, there is an M that 

depends only on e, such that if  

eeT~ CT2C...CTMCG 

satisfy that Ti+l is (TIT[ -1, ~li)-invariant, i = 1, 2 , . . .  M - 10l i  depends on land  

Ti), then the {Ti: 1 < i < M}  e-quasi tile G. 

The formal meaning of the fact that  rli depends on i and T~ is that  there is a 

function �9 from N • (finite subsets of G} to N +, such that  if r/i _< ~(i ,  Ti) for 

i = 1, 2 , . . . ,  M - 1 then the conclusion of the theorem is valid. 

Let Kn be an increasing sequence of finite sets whose union is G and set 

~v n = {F  C G: F is finite and ( I f . ,  1/n) invariant} 
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(note that 9rl D 9r2 D --" ). If r is a translation invariant subadditive function 

defined on the finite subsets of G, set 

and put ao = limn-+~ an. 

such that 

an = inf r 
F E.~n 

We shall show that for any 5 > 0, there is some n(5) 

(6.1) Ir - a0] < 5 for all F E S-nO). 

To see this, fix some e > 0 (which will be chosen later to be small, in a fashion 

that depends only on 5), and then let N be large enough for the conclusion of 

Theorem 6.4 to hold for this e. 

Inductively, find sets {F1 , . . . ,  FN} that both quasi tile and also satisfy 

(6.2) r < ao + 5/2, 1 < i < N. 

Let n(5) be large enough so that any F E $'~(~) is itself e-quasi tiled by 

{F1, . . .  ,FN}. We can now bound r  by using (6.2) and the fact that {Fi} 

e-quasi tile: 

r  < (ao + 5/2)(1 + c) + er 

and so if e is chosen to be small enough we get (6.1), thus proving Theorem 6.1. 

I 

We nute that if r satisfies a stronger subadditive inequality - -  namely 

r U B) + r n B) _< r + r 

for all A, B disjoint or not, then an easier proof can be given which does not 

require the e-quasi tiling machinery. Such a result can be found in Kieffer [12], 

Emerson [13], or in Ollagnier [8], section 2.2. The measure theoretic entropy of 

the span of a partition under a measure preserving action satisfies this stronger 

inequality, as a consequence of the properties of conditional entropy, for which 

there is no clear analogue in the context of mean dimension. 
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